
VVVV BASIC

LMB / Left Mouse Button

RMB / Right Mouse Button

MMB / Middle Mouse Button

01. Run “vvvv” and patch windows

Click this to run VVVV

This is a patch window you can work on. The patch window is like an
empty canvas to draw on. By adding elements (nodes and ioboxes) in
this canvas you can make something “wow” or “useful”.

Quit vvvv : Alt + F4

Resize the patch window by
dragging the corner of the
patch window.

Create a new patch window

+

02. Show the main menu

Click MMB in the empty area.

2.
Click this button: this pop-up window will be
shown at the first time you save the 4v file.

03. Save a 4v file

orClick save menu from the main menu +ctr s

Now the title of the patch
window is changed.

This is the backup file for
your patch(v4p).

To use
Change XML to v4p and
delete “~” .

 “v4p” is the extension of a
vvvv patch file.

* Try save as.
Click the save as menu or “ctr
+ Shift + s”.

1.
Select a location (directory/folder) you want
to save your patch and give it a name.

+

++

Or Or

* Try “open in patch”

* Open

* Open in Patch

04. Open a 4v file

Double click a v4p file with LMB.

This is the patch file you select to “open in patch”.

Close a patch : ctr + w

Input pin

Output pin

Input pin
IOBox

Connecting nodes
is to make the flow of data.

Node

Output pin

Rotate the white shape

a white shape

A place to draw a shape

05. Make Something in 4V with IOBoxes and Nodes

Move your mouse left on the IOBox
list and up/down, and select one.

Move your mouse right toward.
Now you can have float IOBox

05. Creating IOBox - How to create it

To create an IOBox
Double click RMB at empty area in an
patch window

 IO in IOBox stands for: Input/Output. Denoting that those nodes are useful for both purposes: As a means for the user to input data into
the running program. On the other hand they can be used to output/display data from the running program.

05. Creating IOBox - Bang/Toggle

Bang

Toggle

Click on the round box with RMB

When you click the IOBox, it outputs “on (1) ” then
back to “off (0) ” right after that.

When you click the IOBox, it outputs “on (1) ” then
back to “off (0) ” next time you click it.

Click on the square box with RMB

Click on the square box with RMB

Off

Off Off

On

On

05. Creating IOBox - Integer and 2D/3D/4D Vector

Integer is a number that
can be written without a
fractional component.

Changing a value of IOBox:
Hover mouse over the IOBox and click
RMB and hold-drag up/down mouse to
change the value.

Changing a value of IOBox
Hover mouse over the IOBox and click it with LMB and
type a value with keyboard.

2D vector is a set of two
real numbers, such as
1.222.

3D vector is a set of
three real numbers
,such as 1.222.

4D vector is a set of
four real numbers, such
as 1.222.

* 2D/3D/4D vector have other cases of use, such as
“Vector mathematics”. For now let’s consider them as
data containers.

Related Nodes

05. Creating IOBox - String, color, and Enumeration

Changing the value of IOBox
Hover mouse over the IOBox and click
it with LMB and type a value with
keyboard.

Enumeration IOBox
can be connected to a list using each
node.

“Node” IOBox
can be connected to another node. Changing the value of IOBox

Hue : Left / Right
Value (brightness) : Up / Down
Saturation: Ctr(Control) + Up/Down
Alpha: Shift + Up/Down

06. Creating a Node

To create a Node
Double click at an empty area in
patch window.

Typing the name of a node in the
text field and press enter key to
create a node.

Click a name of category with
LMB to expand it. Select a node by
clicking LMB.

Right-click on the text field
to Switch between different drop down menu modes.

Order by alphabet. Order by category. Manage categories.

After double click LMB, the drop
down menu appears.

06. Connection between Nodes

1. Start
Cancel connecting.

Select each line by clicking LMB. The selected line is dark and bold with a blue dot.
You can modify the line by dragging the blue dot. You can use delete key or click the
selected line with RMB.

Switching between different
line types (straight, curve,
steps)

Arrange selected nodes.
(Ctrl(Control) + l)

2. End

Click LMB and hold drag to
select multiful nodes

Connect nodes

06. Connecting: Where to where and reset nodes

Such bold and big input pins hint you which pins can be
connected with the selected output.

Normal pin size.
You cannot connect your output in this pin.

Bold and Big pin.

To reset values of any pins or any
nodes, hover mouse on the pin you
want to reset and click RMB + alt key.

If you want to reset a node, hover
mouse inside the node and click RMB
+ alt key.

07. Help file and Inspector window
The “help file” is useful to understand how a
node works and what the node does.

To open help file, select a node by clicking
LMB and then Press “ F1” key.

Input

Assign a name for the selected node.

Output

Parameter NameParameter Value

Open a help file for a node.
* Try different values in each input to see how the node works but never save it.
Just close it (ctr + w).

Open an inspector
window for a node

(Close : ctr(Control) +

08. Hello renderer

Make a renderer inside the patch.
Select it and press alt + 2 .

Make a renderer outside the patch.
Select it and press alt + 1 .

Make full screen.
Select it and alt + enter / Back to normal (alt
+ enter) .

Anti-aliasing.
Basic setting (4)

08. Hello renderer: Coordinate System of renderer

(0, 0)

(-0.5 , 0.5)

Y

X

(0 , -1)

(-1 , 0)

(1 , 0)

(0 , 1)

More info
http://vvvv.org/documentation/coordinate-systems
http://vvvv.org/documentation/dx9-rendering

The origin of the coordinate system of vvvv is in contrast to other programming languages, such as
“Processing”, not in the upper left corner, but in the middle. Because vvvv coordinate system is not on
pixel but on vectors (more like based on ratio and scale).

The window area has a default range of -1 to +1 in both dimensions. The origin with coordinate 0 is
in the middle of the window.

Fill(EX9 Render state)
Set fill mode to point/ wire
frame/ sold

09. Hello Shapes and Render state

Primitive shapes in 4v
Quad, segment, grid segment, grid, rope, line, pillow
* Try each node. Create nodes, select them and Press F1 key to see the help file of each node.

09. Hello Shapes : Basic use of a shape

Transform.
Define translate(position),
scale(size), rotate, and
centerXY(offset) .

Translate
:Position .

Scale
:Size Rotation

Center XY
:Offset

Render state.
Fill mode: point or wire frame
or solid .

Quad.
It is like a rectangle.

Renderer.
The final destination of the
shape.

AspectioRatio.
Squeezes the incoming transformation to the given
aspect ratio.

* The output of this node needs to be connected the
last input pin of the renderer (it is invisible but you can
connect it).

09. Hello Shapes : AspectRatio

Without AspectioRatio.
The shape will be stretched according to AspectRatio
of renderer.

With AspectioRatio.
The shape will be stretched but keeping its own
AspectioRatio.

HSV (joint).
creates color by providing
‘Hue’, ‘Saturation’, and
Value(Brightness) value.

10. Hello Colour

RGB (joint).
creates a color by providing
‘Red, ‘Green’, and Blue value.

RGB (split).
retrieves the value of ‘Red,
‘Green’, and Blue from the
input color.

Color IOBox.
This IOBox here is only to preview the
output color. You can directly connect
the output of HSV(joint) to other input
pins.

HSV (split).
outputs each value of the input color.
Hue, Saturation, value, and Alpha.

HSV vs. RGB
Hue value determines
which colour it will be. A color comes from the harmony of Red, Green, and Blue. Three

values are needed to make the color.

10. Hello Image
fileTexture.
Imports an Image as texture.
Click the first pin of this node with
RMB to open up a file browser.

Transform(2d).
It is about where the quad position
and how big the quad is.

Transform(2d).
Applies transform to the image .
Check when the scale of image is smaller than 1. The image will
be repeated to fill the rest of area in the quad. The node address
above is related to this case.

DX9Texture.
Captures all images shown inside
the renderer as a texture.

*AspecRatio(transform).
*This node is important to keep the
ratio of your image .

*Default aspect ratio of a quad.
Ratio = 1/1

1

Width

Height

1

*Selected image.
Aspect ratio = height/width
This value needs to be applied
to rescale the quad. AspectRatio
node does this job for you.

*This input pin is for texture.
Every primitive shapes have this pin
to get a texture.

info(texture).
This node gives you detail
information of the image such as
width and height.

Address(EX9, sampler state).
Defines how the texture sampler uses the texture
coordinates. Please check the help file of this node
to see how it works

Filter(EX9, sampler state).
The Filter (Ex9.SamplerState) Controls the circuits within the graphics card (the so
called “Sampler”) which maps the texture bitmap to the geometry mesh. Please
check the help file of this node to see how it works

Pan around the patch window.

10. Hello Text

Text (EX9).
Draws text in the renderer.

Contents.
Text IOBox

Choose a font

Single word or a
sentence

Multi line contents
in TextIOBox

Change text rendering Mode
when the content has multi lines.

The position of your text area

The scale of your text area

Change normalise to width
with multi line contents

It will determine the word limit for each
line.

10. Hello input: mouse

Mouse(window).
This node detects the mouse activities
when mouse moves inside renderer.
-> Compare: Mouse(Devices Desktop)

Re-map your
Mouse position in relation to
AspectRatio.
When you connect the AspectRatio
node to the renderer, the mouse
coordination inside the render
differs from your expected
mouse position. In order to solve
this problem you need to apply
AspectRatio to your mouse
position as well.

The node ApplyTransform
calculates the translated position
by AspectRatio.
* More info: check the help file for
ApplyTransform.

Default Mouse event.
While the mouse button is being pressed, it creates the
continuous true statement : “On” state.

With TogEdge.
When the mouse button is pressed, it creates the true
statement and back to false: Like “Bang”.

With TogEdge + Toggle.
When the mouse button is pressed, it creates
the true statement and stay that state until the
mouse button is pressed again: Like “Toggle”.

Mouse X.

Mouse Y.

Wheel value

Left m
ouse butto

n

Middle m
ouse butto

n

Right m
ouse butto

n

10. Hello input: Keyboard

Keyboard(Global).
This node detects your keyboard
activities whenever you press any
keyboard key.
-> Compare : Keyboard(window)

KeyMatch.
Detects pressed keys when
connected with a Keyboard Node.

Use the inspector to specify the keys to be checked.

Each mode of key interaction behaves differently.. For example,
“DownOnly” case, The true statement only occurs when key is
down and matches with a given key character.

Check the KeyMatch help file to explore how it works.

Group.
The Group node is like an addition
for Layers and it takes care of the
drawing priority. It is possible to
build trees of any complexity, e.g. if
you are using a sub-patch, you group
all render objects in it and output
only the grouped layer.
S (Node) and R (Node) work as well
for the layer data-type.
Furthermore it’s possible to connect
one layer to many grouped nodes .

Add more layers
Open the inspector window and
change the value of layer template
count.

11. Hello Layers and animation fileters.

Current position

Current position

Cyclic/ second

Current position

Go to position

Go to position

Go to position

Filter time

Filter time

Filter time

Animation filters, such as “Damper“, “Oscillator”, and “LinearFil-
ter”, apply a force to the input value which prevents the output
to reach the new value for a given time.
* Check input pin of each node and try to set new value to input
pin. -> See help file (F1) for Damper, Oscillator, and LinearFilter.

Diagram of Animation filter.

The layer order starts from the left
end to the right.The first layer draws
first and next is added on top of the
first layer.. So on, so on

12. Hello Spread-Basic.

Slice index
Be care for, the index number
always starts from “0”
* Slice count = 5

Spread
Slice

Number inside parenthesis in the
tooltip refers to the spread count.

Why Spread? Case A
Case B

Case A and B produce the same graphics.
However the ways to produce the result
are different. Do you think which one is
more effective?

Case B uses a spread. It is much easy to
handle and mange input data.

12. Hello Spread-Basic.

Count(value).
The node counts the number of
slice count when input spreads.

The spread count of the end
result is always same as the
spread count of the most one.

Look at the result.
How two spreads have added
up each others. The least count
spread is repeated again to
match the most count one.

Least

Repeat

Most

12. Hello Spread-Basic nodes for create spread.

* Please Check help files of Linearspread, circularspread, randomspread, typospread, and i spread.

12. Hello Spread-Basic nodes for create spread.

GetSlice.
Gets all slices specified in the index input from
the input spread

Setslice
Gets all slices specified in the index input from
the input spread

13. Hello Map.

Original Input range.

Maps the value in the given range to a proportional value in the given output range.

Original Input range.

Target Output range.

Target Output range.

* Try to change maximum value to 0
and minimum value to 1.

Input

Output

Check this output

Compare both output values

14. Hello LFO.

1

0

Value

Time period

Bang when value reach to 1

How many time it reach to
value “1”

Time period

The longer time period creates slow transition between 0 to 1

Creates a changing value, going linearly from 0 to 1 and jumping back to 0. To change
the shape, you can use a Waveshaper (Value).

15. Hello Waveshaper.
Applies one of some classic wave shaping functions to the value (range 0..1)

1

0

Value

Time period

LFO

Linear
This is similar to LFO shape

Inverse

Triangle

* Sine
This mode is useful to create
a smooth back and forward
motion.

Rectangle

Waveshaper

15. Hello Switch.
Switches between various inputs

Add more inputs

This number decides which input goes to output

Input 1 = index “0” Input 2 = index “1”

Even though this tooltip indicates the first input
as input 1, the actual index number of the first
input starts from “0” . Please be careful about it.

There are many switch nodes you can select, based
on which data type you are working on. All the node
follow the same basic logic. The only difference is
what kind of data type a switch node accepts.
Switch node (input) and switch node (output) are op-
posite to each other. Check the switch node (output).

Diagram for switch node (input) Diagram for switch node (Output)

Select
 The first input

Select
 The second input

16. Hello Select.
Select selects, how often a slice from a given
spread is inserted into a new spread.

Repeat input following a
given number. Repeat it once.

The spread account of the
new spread is “3”
* Attention to the order of
each slice in the new spread.

Original Input

New Output as a new
spread Insert into a new spread.

* In this example, firstly “select
node” repeats yellow color twice
and inserts the value into a new
spread then do the same thing
with red color and then inserts
them after yellow color in the
spread . The spread count of the new

spread is “4” as each input
value is repeated twice.

Repeat it twice.

There are many select nodes you can select, based
on which data type you are working on. All the node
follow the same basic logic. The only difference is
what kind of data type a select node accepts.

17. Hello Vector2D (Joint/ split). Joins a 2d vector (a pair of two inputs) from single values

Input 1
Left

Input 1
Left

Output1
Left side

Output 2
Right side

Left
Check this order

Left
Right
Left
Right
Left
Right
Left
Right
Left
Right

New spread

Vector2D (joint)

Vector2D (Split)

Input 2
Right

Input 2
Right

Right

17. Hello Vector2D (Joint/ split) - In use.

Why Transform (2D vector)? If the results are same for both
methods?

Input 1
Left

X input

Use this value
for X position

Joint Left and right
side input value as a

new spread

Transform (2D Vector): Transform

Use this value
for Y position

Input 2
Right

Y input

* Transform (2D Vector)
only arrows one spread for
XY coordination.

Same result

17. Hello Vector2D (Joint/ split) - In use.

Same result

Output of the vector
node needs to be
connect ed to map
node once to get the
result.

Each spread for X
and Y needs to be
connect ed to map
respectively. It means
you need to do same
job twice to get the
result.

Which way is more easy to handle? With Vector or without
Vector?

